Exact and Stable Recovery of Pairwise Interaction Tensors

نویسندگان

  • Shouyuan Chen
  • Michael R. Lyu
  • Irwin King
  • Zenglin Xu
چکیده

Tensor completion from incomplete observations is a problem of significant practical interest. However, it is unlikely that there exists an efficient algorithm with provable guarantee to recover a general tensor from a limited number of observations. In this paper, we study the recovery algorithm for pairwise interaction tensors, which has recently gained considerable attention for modeling multiple attribute data due to its simplicity and effectiveness. Specifically, in the absence of noise, we show that one can exactly recover a pairwise interaction tensor by solving a constrained convex program which minimizes the weighted sum of nuclear norms of matrices from O(nr log(n)) observations. For the noisy cases, we also prove error bounds for a constrained convex program for recovering the tensors. Our experiments on the synthetic dataset demonstrate that the recovery performance of our algorithm agrees well with the theory. In addition, we apply our algorithm on a temporal collaborative filtering task and obtain state-of-the-art results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Provable Models for Robust Low-Rank Tensor Completion

In this paper, we rigorously study tractable models for provably recovering low-rank tensors. Unlike their matrix-based predecessors, current convex approaches for recovering low-rank tensors based on incomplete (tensor completion) and/or grossly corrupted (tensor robust principal analysis) observations still suffer from the lack of theoretical guarantees, although they have been used in variou...

متن کامل

Ab Initio Quantum Chemical Studies of 15N and 13C NMR Shielding Tensors in Serine and Complexes of Serine- nH2O: Investigation on Strength of the CαH…O Hydrogen bonding in the Amino Acid Residue.

In this paper, the hydrogen bonding (HB) effects on the NMR chemical shifts of selected atoms in serineand serine-nH2O complexes (from one to ten water molecules) have been investigated with quantummechanical calculations of the 15N and 13C tensors. Interaction with water molecules causes importantchanges in geometry and electronic structure of serine.For the compound studied, the most importan...

متن کامل

The Patch Recovery for Finite Element Approximation of Elasticity Problems under Quadrilateral Meshes

In this paper, some patch recovery methods are proposed and analyzed for finite element approximation of elasticity problems using quadrilateral meshes. Under a mild mesh condition, superconvergence results are established for the recovered stress tensors. Consequently, a posteriori error estimators based on the recovered stress tensors are asymptotically exact.

متن کامل

Exact Camera Location Recovery by Least Unsquared Deviations

We establish exact recovery for the Least Unsquared Deviations (LUD) algorithm of Özyesil and Singer. More precisely, we show that for sufficiently many cameras with given corrupted pairwise directions, where both camera locations and pairwise directions are generated by a special probabilistic model, the LUD algorithm exactly recovers the camera locations with high probability. A similar exact...

متن کامل

On orthogonal tensors and best rank-one approximation ratio

As is well known, the smallest possible ratio between the spectral norm and the Frobenius norm of an m× n matrix with m ≤ n is 1/ √ m and is (up to scalar scaling) attained only by matrices having pairwise orthonormal rows. In the present paper, the smallest possible ratio between spectral and Frobenius norms of n1×· · ·×nd tensors of order d, also called the best rank-one approximation ratio i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013